With one in every four species facing extinction, which animals are the best equipped to survive the climate crisis? (Spoiler alert: it’s probably not humans).
“I don’t think it will be the humans. I think we’ll go quite early on,” says Julie Gray with a laugh. I’ve just asked Gray, a plant molecular biologist at the University of Sheffield, which species she thinks would be the last ones standing if we don’t take transformative action on climate change. Even with our extraordinary capacity for innovation and adaptability, humans, it turns out, probably won’t be among the survivors.
This is partly because humans reproduce agonisingly slowly and generally just one or two at a time – as do some other favourite animals, like pandas. Organisms that can produce many offspring quickly may have a better shot at avoiding extinction.
It may seem like just a thought experiment. But discussing which species are more, or less, able to survive climate change is disturbingly concrete. As a blockbuster biodiversity report stated recently, one in every four species currently faces extinction. Much of this vulnerability is linked to climate change, which is bringing about higher temperatures, sea level rise, more variable conditions and more extreme weather, among other impacts.
Some caveats are in order. While the seriousness of climate change is undeniable, it’s impossible to know exactly how those effects will play out for species vulnerability, especially far into the future. Methods of forecasting vulnerability are ever evolving, while limited and inconsistent data, plus the complex interactions of policies, land-use changes, and ecological effects, mean that projections aren’t set in stone. Climate change vulnerability assessments have had biases and blind spots (just as humans do more generally). (Read more about how our cognitive biases prevent climate action). Moreover, the indirect effects that are responsible for many climate change impacts on populations, such as in the food chain, are more complex to model than direct effects.
Some species of Australia’s quolls already have been made locally extinct by invasive species, a trend that will intensify with climate change (Credit: Getty Images) |
The American bullfrog could be one of few species to benefit from global warming (Credit: Getty Images) |
And, of course, there is an alternative: we humans could get our acts together and stop the climate crisis from continuing to snowball by adopting policies and lifestyles that reduce greenhouse gases. But for the purposes of these projections, we’re assuming that’s not going to happen.
Tenacious trends
Even with the uncertainties, we can make some educated guesses about broad patterns.
Heat tolerant and drought resistant plants, like those found in deserts rather than rainforests, are more likely to survive. So are plants whose seeds can be dispersed over long distances, for instance by wind or ocean currents (like coconuts), rather than by ants (like some acacias). Plants that can adjust their flowering times may also be better able to deal with higher temperatures. Jen Lau, a biologist at Indiana University Bloomington, suggests that this may give non-native plants the advantage when it comes to responding to climate change.
We also can look to history as a guide. The fossil record contains signs of how species have coped with previous climatic shifts. There are genetic clues to long-term survival too, such as in the hardy green microalgae that adapted to saltier environments over millions of years – a finding only made in September 2018 by Fatima Foflonker of Rutgers and colleagues.
Importantly, though, the uniquely devastating nature of the current human-made climate crisis means that we can’t fully rely on benchmarks from the past.
“The climate change that we see in the future will differ in many ways from the climate change that we’ve seen in the past”, notes Jamie Carr, an outreach officer for the Climate Change Specialist Group of the IUCN Species Survival Commission.
The historical record does point to the tenacity of cockroaches. These largely unloved critters “have survived every mass extinction event in history so far”, says Asmeret Asefaw Berhe, a soil biogeochemist at the University of California, Merced. For instance, cockroaches adapted to an increasingly arid Australia, tens of millions of years ago, by starting to burrow into soil.
Cockroaches have survived every mass extinction event in history thus far (Credit: Getty Images) |
As a comparison, take an animal like the koala. Koalas eat primarily eucalyptus leaves, which are becoming less nutritious due to increasing CO2 levels in the atmosphere. As a result, climate change is increasing their risk of starvation.
Climate change is increasing the risk of starvation for koalas (Credit: Getty Images) |
That’s compared to the “early successional” species that succeed in disturbed habitats, such as grasslands and young forest. These species “might do well under climate change because they thrive in states of change and transition”, says Jessica Hellmann, who leads the Institute on the Environment at the University of Minnesota. “For example, deer (in the US) are common in suburban areas and thrive where forests have been removed or are regularly disturbed.”
Species that Carr calls “mobile generalists”, which can move and adapt to different environments, are likely to be more durable in the face of climate change. While this adaptability is generally positive, it might come at a cost to other parts of an ecosystem. Invasive species like cane toads, which are poisonous, have led to local extinctions of other species like quolls (carnivorous marsupials) and monitors (large lizards) in Australia. And Hellmann says that the versatility of invasive plant species “leads to the worry that, in addition to losing vulnerable species, a warmer world will be a weedier world”. The weeds typically found along roadsides may be especially long-lasting in comparison with other plants.
Deer, which thrive in states of change and transition, may be more resilient (Credit: Getty Images) |
Buffer zones
The good news is that some specialised species might have a buffer known as climate change refugia: areas that are relatively protected from climate change’s consequences, such as deep sea canyons. Although deep sea zones are heating up and declining in oxygen concentrations, Jonathon Stillman, a marine environmental physiologist at San Francisco State University, suggests that deep sea hydrothermal vent ecosystems, specifically, might be one bright spot in an otherwise mostly bleak situation.
“They are pretty much uncoupled from the surface of our planet and I doubt that climate change will impact them in the least,” he says. “Humanity didn’t even know they existed until 1977. Their energy comes from the core of our Earth rather than from the Sun, and their already extreme habitat is unlikely to be altered by changes happening at the ocean surface.”
Similarly, Douglas Sheil, a tropical forest ecologist at the Norwegian University of Life Sciences, suggests that “at some point in the future the only vertebrate species surviving in Africa might be a blind cave fish deep underground”. As in the deep sea hydrothermal vents, “many species remain undiscovered and thus unknown – Europe’s first cave fish was only found in Germany in 2015.”
Heat-adapted organisms and microbes living in extreme environments are likely to be less affected by climate change (Credit: Getty Images) |
The future will have not only more extreme environments, but also more urban, human-altered spaces. So “resistant species would likely be the ones that are well attuned to living in human-modified habitats such as urban parks and gardens, agricultural areas, farms, tree plantations, and so on”, says Arvin C Diesmos, a herpetology curator at the Philippine National Museum of Natural History.
CIFOR’s Nasi sums it up. “The winners will be very small, preferably endotherms if vertebrates, highly adaptable, omnivorous or able to live in extreme conditions.”
In the words of the IUCN’s Carr, “It doesn’t sound like a very pretty world.”
Endangered plants like the Brodiaea are likely to be increasingly vulnerable with climate change (Credit: Getty Images) |
Links
- Humans 'threaten 1m species with extinction'
- Nature's emergency in five graphics
- Why The Polar Bear Is An Indisputable Image Of Climate Change
- Fixing Australia’s Extinction Crisis Means Thinking Bigger Than Individual Species
- Climate Change Sparks Fears For Flying Foxes After 23,000 Deaths
- 'Our Little Brown Rat': First Climate Change-Caused Mammal Extinction
- The Biggest Issues For Wildlife And Endangered Species In 2019
- Worst Mass Extinction Event In Earth’s History Was Caused By Global Warming Analogous To Current Climate Crisis
- How weeds help fight climate change
- How catastrophes can change the course of humanity
- Ten simple ways to act on climate change
- Golden Bowerbirds' Building Prowess Helps Scientists Monitor Climate Change, And Alarm Bells Are Ringing
- Could wooden buildings be a climate change solution?
No comments:
Post a Comment